Deza Graphs: A Generalization of Strongly Regular Graphs
نویسندگان
چکیده
We consider the following generalization of strongly regular graphs. A graph G is a Deza graph if it is regular and the number of common neighbors of two distinct vertices takes on one of two values (not necessarily depending on the adjacency of the two vertices). We introduce several ways to construct Deza graphs, and develop some basic theory. We also list all diameter two Deza graphs which are not strongly regular and have at most 13 vertices. # 1999 John Wiley & Sons, Inc.J Combin Designs 7: 395±405, 1999
منابع مشابه
A Generalization of Strongly Regular Graphs
Motivated from an example of ridge graphs relating to metric polytopes, a class of connected regular graphs such that the squares of their adjacency matrices are in certain symmetric Bose-Mesner algebras of dimension 3 is considered in this paper as a generalization of strongly regular graphs. In addition to analysis of this prototype example defined over ðMetP5Þ , some general properties of th...
متن کاملA directed version of Deza graphs - Deza digraphs
As a generalization of Deza graphs, we introduce Deza digraphs and describe the basic theory of these graphs. We also prove the necessary and sufficient conditions when a weakly distance-regular digraph is a Deza digraph.
متن کاملCERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملStrongly walk - regular grapsh
We study a generalization of strongly regular graphs. We call a graph strongly walkregular if there is an ` > 1 such that the number of walks of length ` from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. We will show that a strongly walk-regular graph must be an empty graph, a complete graph, a strongly regular graph, a disjoint un...
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کامل